Caracterización molecular por secuenciación de nueva generación obtenida en biopsia líquida en una cohorte multicéntrica de pacientes con diagnóstico de cáncer de pulmón avanzado en Argentina

Autores/as

DOI:

https://doi.org/10.56969/oc.v27i2.79

Palabras clave:

secuenciación de nueva generación, biopsia líquida, cáncer de pulmón de células no pequeñas, next-generation sequencing, liquid biopsy, non-small cell lung cancer

Resumen

La secuenciación de nueva generación (NGS) ha revolucionado el diagnóstico molecular del cáncer de pulmón. A pesar que el tejido tumoral ha sido históricamente el bioespecimen estándar, éste tiene algunas limitaciones. La biopsia líquida representa una alternativa no invasiva, práctica y reproducible para la genotipificación del cáncer de pulmón de células no pequeñas (CPCNP). Se presenta la caracterización molecular por NGS en plasma, descripción de alteraciones moleculares en genes potencialmente accionables y genes de potencial origen germinal y variantes potencialmente involucradas en el proceso de hematopoyesis clonal. Análisis retrospectivo, observacional, multicéntrico de cohorte de pacientes con diagnóstico de CPCNP no escamoso avanzado de 5 hospitales universitarios de Argentina a los que se les realizó biopsia líquida (FoundationLiquidCDx) entre junio y diciembre 2020. Se realizó la caracterización de oncogenicidad y accionabilidad según OncoKB, COSMIC y VarSome. Se incluyeron 52 pacientes; 43 muestras al diagnóstico y 9 a la progresión. La mediana de carga mutacional tumoral fue 3 mut/mb [0-172] en 39 muestras evaluables; inestabilidad microsatelital en 1 de 3 muestras evaluables. Se identificaron 254 alteraciones moleculares en 80 genes (n=50) y 33 alteraciones en 13 genes potencialmente accionables en el 49% de los pacientes (21/43) siendo las más frecuentes: KRAS 18.6% (8/43), NF1 11.6% (5/43) y EGFR 9.3% (4/43). Se identificaron 13 alteraciones con valor de frecuencia alélica > 40% en genes de potencial origen germinal (BRCA1, BRCA2, TP53, CSF3R y CHEK2). Este análisis aporta una descripción de la genotipificación por NGS en biopsia líquida de una cohorte de pacientes nuestra población.

Citas

Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017; 23:703-13. DOI: https://doi.org/10.1038/nm.4333

Jordan EJ, Kim HR, Arcila ME, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov 2017; 7:596-609. DOI: https://doi.org/10.1158/2159-8290.CD-16-1337

Shames DS, Wistuba II. The evolving genomic classification of lung cancer. J Pathol 2014; 232:121-33. DOI: https://doi.org/10.1002/path.4275

Inamura K. Update on immunohistochemistry for the diagnosis of lung cancer. Cancers (Basel) 2018; 10:72. DOI: https://doi.org/10.3390/cancers10030072

Mosele F, Remon J, Mateo J, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. Ann Oncol 2020; 31:1491-505. DOI: https://doi.org/10.1016/j.annonc.2020.07.014

Sholl LM, Aisner DL, Varella-Garcia M, et al. Multi- institutional oncogenic driver mutation analysis in lung adenocarcinoma: The Lung Cancer Mutation Consortium Experience. J Thorac Oncol 2015; 10:768-77. DOI: https://doi.org/10.1097/JTO.0000000000000516

Barlesi F, Mazieres J, Merlio J-P, et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT). Lancet 2016; 387:1415-26. DOI: https://doi.org/10.1016/S0140-6736(16)00004-0

Rolfo C, Mack PC, Scagliotti GV, et al. Liquid biopsy for advanced non-small cell lung cancer (NSCLC): A statement paper from the IASLC. J Thorac Oncol 2018; 13:1248–68. DOI: https://doi.org/10.1016/j.jtho.2018.05.030

Rolfo C, Mack P, Scagliotti GV, et al. Liquid biopsy for advanced NSCLC: A consensus statement from the International Association for the Study of Lung Cancer. J Thorac Oncol 2021; 16:1647-62. DOI: https://doi.org/10.1016/j.jtho.2021.06.017

Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28:622-9. DOI: https://doi.org/10.1002/humu.20495

Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2:a001008. DOI: https://doi.org/10.1101/cshperspect.a001008

Cheok CF, Lane DP. Exploiting the p53 pathway for therapy. Cold Spring Harb Perspect Med 2017; 7:a026310. DOI: https://doi.org/10.1101/cshperspect.a026310

Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25:304-17. DOI: https://doi.org/10.1016/j.ccr.2014.01.021

Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol 2013; 15:2-8. DOI: https://doi.org/10.1038/ncb2641

Offin M, Chan JM, Tenet M, et al. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J Thorac Oncol 2019; 14:1784-93. DOI: https://doi.org/10.1016/j.jtho.2019.06.002

Offin M, Rizvi H, Tenet M, et al. Tumor mutation burden and efficacy of EGFR-Tyrosine Kinase Inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res 2019; 2:1063-9. DOI: https://doi.org/10.1158/1078-0432.CCR-18-1102

Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9:563-75. DOI: https://doi.org/10.1038/nrc2676

Facchinetti F, Bluthgen MV, Tergemina-Clain G, et al. LKB1/STK11 mutations in non-small cell lung cancer patients: Descriptive analysis and prognostic value. Lung Cancer 2017; 112:62-8. DOI: https://doi.org/10.1016/j.lungcan.2017.08.002

Papillon-Cavanagh S, Doshi P, Dobrin R, Szustakowski J, Walsh AM. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort. ESMO Open 2020; 5: e000706. DOI: https://doi.org/10.1136/esmoopen-2020-000706

Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/ LKB1 Mutations and PD-1 inhibitor resistance in KRAS- mutant lung adenocarcinoma. Cancer Discov 2018; 8:822–35. DOI: https://doi.org/10.1158/2159-8290.CD-18-0099

Ricciuti B, Arbour KC, Lin JJ, et al. Diminished efficacy of programmed death-(ligand)1 inhibition in stk11- and KEAP1- mutant lung adenocarcinoma is affected by KRAS mutation status. J Thorac Oncol 2022; 17:399-410. DOI: https://doi.org/10.1016/j.jtho.2022.01.022

Arbour KC, Jordan E, Kim HR, et al. Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non–small cell lung cancer. Clin Cancer Res 2018; 24:334-40. DOI: https://doi.org/10.1158/1078-0432.CCR-17-1841

Moore AR, Rosenberg SC, McCormick F, Malek S. RAS- targeted therapies: is the undruggable drugged? Nat Rev Drug Discov 2020; 19:533-52. DOI: https://doi.org/10.1038/s41573-020-0068-6

Skoulidis F, Li BT, Dy GK, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med 2021; 384:2371-81. DOI: https://doi.org/10.1056/NEJMoa2103695

Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511:543-50. DOI: https://doi.org/10.1038/nature13385

Wang Y, McKay JD, Rafnar T, et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nature Genetics 2014; 46:736-41. DOI: https://doi.org/10.1038/ng.3002

Lee Y-C, Lee Y-C, Li C-Y, Lee Y-L, Chen B-L. BRCA1 and BRCA2 gene mutations and lung cancer sisk: A meta-analysis. Medicina (Kaunas) 2020; 56:212. DOI: https://doi.org/10.3390/medicina56050212

Heymach J, Thomas M, Besse B, et al. An open-label, multidrug, biomarker-directed, multicentre phase II umbrella study in patients with non-small cell lung cancer, who progressed on an anti-PD-1/PD-L1 containing therapy (HUDSON). J Clin Oncol 2018; 36(15_suppl):TPS3120-TPS3120. DOI: https://doi.org/10.1200/JCO.2018.36.15_suppl.TPS3120

Tsoulos N, Papadopoulou E, Metaxa-Mariatou V, et al. Tumor molecular profiling of NSCLC patients using next generation sequencing. Oncol Rep 2017; 38: 3419-29. 2017. DOI: https://doi.org/10.3892/or.2017.6051

Meric-Bernstam F, Brusco L, Daniels M, et al. Incidental germline variants in 1000 advanced cancers on a prospective somatic genomic profiling protocol. Ann Oncol. 2016 May;27(5):795-800. doi: 10.1093/annonc/mdw018. Epub 2016 Jan 19. PMID: 26787237; PMCID: PMC4843184. DOI: https://doi.org/10.1093/annonc/mdw018

Cobain EF, Wu Y-M, Vats P, et al. Assessment of clinical benefit of integrative genomic profiling in advanced solid tumors. JAMA Oncol 2021; 7:525–33. DOI: https://doi.org/10.1001/jamaoncol.2020.7987

Rebbeck TR, Friebel TM, Friedman E, Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum Mutat 2018; 39:593-620.

Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer- prone family with Li-Fraumeni syndrome. Nature 1990; 348:747-9. DOI: https://doi.org/10.1038/348747a0

Hu Y, Ulrich BC, Supplee J, et al. False-positive plasma genotyping due to clonal hematopoiesis. Clin Cancer Res 2018; 24:4437-43. DOI: https://doi.org/10.1158/1078-0432.CCR-18-0143

Descargas

Publicado

20-12-2022

Cómo citar

Spotti, M., Minatta, J. N., Rizzo, M. M., Castagneris, N., Sena, S., Recondo, G., & Bluthgen, M. V. (2022). Caracterización molecular por secuenciación de nueva generación obtenida en biopsia líquida en una cohorte multicéntrica de pacientes con diagnóstico de cáncer de pulmón avanzado en Argentina. Oncología Clínica, 27(2). https://doi.org/10.56969/oc.v27i2.79

Número

Sección

Artículos Originales

Categorías

Artículos más leídos del mismo autor/a