Análisis del polimorfismo FcƴRIII en pacientes con cáncer de mama HER2+ en tratamiento neoadyuvante con Quimioterapia más trastuzumab y pertuzumab

Autores/as

  • Ayelen Ivana Pesce Viglietti Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • María Belén Bordignon Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • Alexis Ostinelli
  • Gerardo Cueto Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • María Belén Sanchez Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • Florencia Perazzo Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • Mora Amat Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • Federico Coló Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • María Victoria Costanzo Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • Adrian Nervo Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • Jorge Nadal Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • Gabriel Crimi Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • Ignacio Mc Lean Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • Eunice Amancay Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • José Mordoh Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires
  • Estrella Mariel Levy Centro de Investigaciones Oncológicas FUCA-Fundación Cáncer, Buenos Aires

DOI:

https://doi.org/10.56969/oc.v28i2.143

Palabras clave:

FcƴRIIIa, polimorfismo, cáncer de mama HER2+, trastuzumab, polymorphism, HER2+ breast cancer

Resumen

Trastuzumab (TRZ) fue el primer anticuerpo monoclonal (AcM) IgG humanizado aprobado para el tratamiento del cáncer de mama (CM). Desde su aprobación en 1998, se estima que se ha administrado a más de 2,5 millones de mujeres en todo el mundo y se encuentra en la lista de medicamentos esenciales de la OMS. TRZ ha revolucionado la terapia del CM HER2+. Tanto los mecanismos no inmunológicos como los inmunomediados explican la actividad clínica de TRZ.

La asociación entre el polimorfismo del FcƴRIIIa y la eficacia terapéutica de los AcMs se ha comprobado en varios modelos. Los pacientes con los genotipos F/V y V/F presentan una mejor respuesta clínica cuando son tratados con diferentes anticuerpos. Sin embargo, existen datos controvertidos sobre la asociación con el polimorfismo FcƴRIIIa y la actividad del TRZ

En este trabajo evaluamos las variantes del polimorfismo FcƴRIIIa en pacientes con CM HER2+ en terapia neoadyuvante (NA) compuesta de quimioterapia (QT) basada en taxanos y platino en combinación con TRZ y pertuzumab (PER).

Si bien nuestro estudio no logo identificar ninguna asociación genética de los distintos alelos del FcgRIIIa con la respuesta al tratamiento neoadyuvante de quimioterapia en combinación con TRZ, quizás debido al bajo número de pacientes que no presentaron respuesta patológica completa (RPC), estos resultados no excluyen un papel para los FcγR.

Citas

Ravetch JV, Bolland S. IgG Fc receptors. Annu Rev Immunol. 2001;19:275-90. doi: 10.1146/annurev.immunol.19.1.275. PMID: 11244038. DOI: https://doi.org/10.1146/annurev.immunol.19.1.275

Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018 Jan;18(1):46-61. doi: 10.1038/nri.2017.106. Epub 2017 Oct 24. PMID: 29063907; PMCID: PMC6369690. DOI: https://doi.org/10.1038/nri.2017.106

Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990 Dec 15;76(12):2421-38. PMID: 2265240. DOI: https://doi.org/10.1182/blood.V76.12.2421.2421

Shi Y, Fan X, Deng H, Brezski RJ, Rycyzyn M, Jordan RE, et al. Trastuzumab triggers phagocytic Shi Y, Fan X, Deng H, Brezski RJ, Rycyzyn M, Jordan RE, Strohl WR, Zou Q, Zhang N, An Z. Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcγ receptors on macrophages. J Immunol. 2015 May 1;194(9):4379-86. doi: 10.4049/jimmunol.1402891. Epub 2015 Mar 20. PMID: 25795760. DOI: https://doi.org/10.4049/jimmunol.1402891

Lehrnbecher T, Foster CB, Zhu S, Leitman SF, Goldin LR, Huppi K, Chanock SJ. Variant genotypes of the low-affinity Fcgamma receptors in two control populations and a review of low-affinity Fcgamma receptor polymorphisms in control and disease populations. Blood. 1999 Dec 15;94(12):4220-32. PMID: 10590067. DOI: https://doi.org/10.1182/blood.V94.12.4220

Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997 Aug 1;90(3):1109-14. PMID: 9242542. DOI: https://doi.org/10.1182/blood.V90.3.1109.1109_1109_1114

Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001 Mar 2;276(9):6591-604. doi: 10.1074/jbc.M009483200. Epub 2000 Nov 28. PMID: 11096108. DOI: https://doi.org/10.1074/jbc.M009483200

Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 2008 Apr 10;26(11):1789-96. doi: 10.1200/JCO.2007.14.8957. Epub 2008 Mar 17. PMID: 18347005. DOI: https://doi.org/10.1200/JCO.2007.14.8957

Tamura K, Shimizu C, Hojo T, Akashi-Tanaka S, Kinoshita T, Yonemori K, et al. FcγR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer. Ann Oncol. 2011 Jun;22(6):1302-1307. doi: 10.1093/annonc/mdq585. Epub 2010 Nov 25. PMID: 21109570. DOI: https://doi.org/10.1093/annonc/mdq585

Hurvitz SA, Betting DJ, Stern HM, Quinaux E, Stinson J, Seshagiri S, et al. Analysis of Fcγ receptor IIIa and IIa polymorphisms: lack of correlation with outcome in trastuzumab-treated breast cancer patients. Clin Cancer Res. 2012 Jun 15;18(12):3478-86. doi: 10.1158/1078-0432.CCR-11-2294. Epub 2012 Apr 13. PMID: 22504044; PMCID: PMC3821872. DOI: https://doi.org/10.1158/1078-0432.CCR-11-2294

Norton N, Olson RM, Pegram M, Tenner K, Ballman KV, Clynes R, et al. Association studies of Fcγ receptor polymorphisms with outcome in HER2+ breast cancer patients treated with trastuzumab in NCCTG (Alliance) Trial N9831. Cancer Immunol Res. 2014 Oct;2(10):962-9. doi: 10.1158/2326-6066.CIR-14-0059. Epub 2014 Jul 2. PMID: 24989892; PMCID: PMC4215796. DOI: https://doi.org/10.1158/2326-6066.CIR-14-0059

Gavin PG, Song N, Kim SR, Lipchik C, Johnson NL, Bandos H, et al. Association of Polymorphisms in FCGR2A and FCGR3A With Degree of Trastuzumab Benefit in the Adjuvant Treatment of ERBB2/HER2-Positive Breast Cancer: Analysis of the NSABP B-31 Trial. JAMA Oncol. 2017 Mar 1;3(3):335-341. doi: 10.1001/jamaoncol.2016.4884. PMID: 27812689; PMCID: PMC5344747. DOI: https://doi.org/10.1001/jamaoncol.2016.4884

Mahaweni NM, Olieslagers TI, Rivas IO, Molenbroeck SJJ, Groeneweg M, Bos GMJ, et al. A comprehensive overview of FCGR3A gene variability by full-length gene sequencing including the identification of V158F polymorphism. Sci Rep. 2018 Oct 29;8(1):15983. doi: 10.1038/s41598-018-34258-1. PMID: 30374078; PMCID: PMC6206037. DOI: https://doi.org/10.1038/s41598-018-34258-1

Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer. 2006 Jan 30;94(2):259-67. doi: 10.1038/sj.bjc.6602930. PMID: 16404427; PMCID: PMC2361112. DOI: https://doi.org/10.1038/sj.bjc.6602930

Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008 Jan;8(1):34-47. doi: 10.1038/nri2206. PMID: 18064051. DOI: https://doi.org/10.1038/nri2206

Gillis C, Gouel-Chéron A, Jönsson F, Bruhns P. Contribution of Human FcγRs to Disease with Evidence from Human Polymorphisms and Transgenic Animal Studies. Front Immunol. 2014 May 30;5:254. doi: 10.3389/fimmu.2014.00254. PMID: 24910634; PMCID: PMC4038777. DOI: https://doi.org/10.3389/fimmu.2014.00254

Sondermann P, Huber R, Oosthuizen V, Jacob U. The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature. 2000 Jul 20;406(6793):267-73. doi: 10.1038/35018508. PMID: 10917521. DOI: https://doi.org/10.1038/35018508

Vogelpoel LT, Baeten DL, de Jong EC, den Dunnen J. Control of cytokine production by human fc gamma receptors: implications for pathogen defense and autoimmunity. Front Immunol. 2015 Feb 24;6:79. doi: 10.3389/fimmu.2015.00079. PMID: 25759693; PMCID: PMC4338787. DOI: https://doi.org/10.3389/fimmu.2015.00079

Teige I, Mårtensson L, Frendéus BL. Targeting the Antibody Checkpoints to Enhance Cancer Immunotherapy-Focus on FcγRIIB. Front Immunol. 2019 Mar 12;10:481. doi: 10.3389/fimmu.2019.00481. PMID: 30930905; PMCID: PMC6423481. DOI: https://doi.org/10.3389/fimmu.2019.00481

Treffers LW, van Houdt M, Bruggeman CW, Heineke MH, Zhao XW, van der Heijden J, et al. FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils. Front Immunol. 2019 Jan 30;9:3124. doi: 10.3389/fimmu.2018.03124. PMID: 30761158; PMCID: PMC6363688. DOI: https://doi.org/10.3389/fimmu.2018.03124

Golay J, Valgardsdottir R, Musaraj G, Giupponi D, Spinelli O, Introna M. Human neutrophils express low levels of FcγRIIIA, which plays a role in PMN activation. Blood. 2019 Mar 28;133(13):1395-1405. doi: 10.1182/blood-2018-07-864538. Epub 2019 Jan 17. PMID: 30655272; PMCID: PMC6484458. DOI: https://doi.org/10.1182/blood-2018-07-864538

Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood. 2008 Oct 1;112(7):2780-6. doi: 10.1182/blood-2008-02-142125. Epub 2008 Jul 18. PMID: 18641368; PMCID: PMC2556613. DOI: https://doi.org/10.1182/blood-2008-02-142125

Chauhan AK. Human CD4(+) T-Cells: A Role for Low-Affinity Fc Receptors. Front Immunol. 2016 Jun 1;7:215. doi: 10.3389/fimmu.2016.00215. PMID: 27313579; PMCID: PMC4887501. DOI: https://doi.org/10.3389/fimmu.2016.00215

Holgado MP, Sananez I, Raiden S, Geffner JR, Arruvito L. CD32 Ligation Promotes the Activation of CD4+ T Cells. Front Immunol. 2018 Nov 30;9:2814. doi: 10.3389/fimmu.2018.02814. PMID: 30555482; PMCID: PMC6284025. DOI: https://doi.org/10.3389/fimmu.2018.02814

Farley CR, Morris AB, Tariq M, Bennion KB, Potdar S, Kudchadkar R, Lowe MC, Ford ML. FcγRIIB is a T cell checkpoint in antitumor immunity. JCI Insight. 2021 Feb 22;6(4):e135623. doi: 10.1172/jci.insight.135623. PMID: 33616086; PMCID: PMC7934918. DOI: https://doi.org/10.1172/jci.insight.135623

Wieckowski S, Avenal C, Orjalo AV Jr, Gygax D, Cymer F. Toward a Better Understanding of Bioassays for the Development of Biopharmaceuticals by Exploring the Structure-Antibody-Dependent Cellular Cytotoxicity Relationship in Human Primary Cells. Front Immunol. 2020 Oct 29;11:552596. doi: 10.3389/fimmu.2020.552596. PMID: 33193318; PMCID: PMC7658677. DOI: https://doi.org/10.3389/fimmu.2020.552596

Ben Mkaddem S, Benhamou M, Monteiro RC. Understanding Fc Receptor Involvement in Inflammatory Diseases: From Mechanisms to New Therapeutic Tools. Front Immunol. 2019 Apr 12;10:811. doi: 10.3389/fimmu.2019.00811. PMID: 31057544; PMCID: PMC6481281. DOI: https://doi.org/10.3389/fimmu.2019.00811

Benonisson H, Sow HS, Breukel C, Claassens J, Brouwers C, Linssen MM, et al. High FcγR Expression on Intratumoral Macrophages Enhances Tumor-Targeting Antibody Therapy. J Immunol. 2018 Dec 15;201(12):3741-3749. doi: 10.4049/jimmunol.1800700. Epub 2018 Nov 5. PMID: 30397036. DOI: https://doi.org/10.4049/jimmunol.1800700

Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000 Apr;6(4):443-6. doi: 10.1038/74704. PMID: 10742152. DOI: https://doi.org/10.1038/74704

Negri FV, Musolino A, Naldi N, Bortesi B, Missale G, Laccabue D, et al. Role of immunoglobulin G fragment C receptor polymorphism-mediated antibody-dependant cellular cytotoxicity in colorectal cancer treated with cetuximab therapy. Pharmacogenomics J. 2014 Feb;14(1):14-9. doi: 10.1038/tpj.2012.54. Epub 2013 Jan 8. PMID: 23296156. DOI: https://doi.org/10.1038/tpj.2012.54

Robak T, Robak E. New anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoid malignancies. BioDrugs. 2011 Feb 1;25(1):13-25. doi: 10.2165/11539590-000000000-00000. PMID: 21090841. DOI: https://doi.org/10.2165/11539590-000000000-00000

LIU, Liqin, et al. Margetuximab mediates greater Fc-dependent anti-tumor activities than trastuzumab or pertuzumab in vitro. Cancer Res, 2019, vol. 79, no 13. DOI: https://doi.org/10.1158/1538-7445.AM2019-1538

Nordstrom JL, Gorlatov S, Zhang W, Yang Y, Huang L, Burke S, et al. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Res. 2011;13(6):R123. doi: 10.1186/bcr3069. Epub 2011 Nov 30. PMID: 22129105; PMCID: PMC3326565. DOI: https://doi.org/10.1186/bcr3069

Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S,et al. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res. 2007 Sep 15;67(18):8882-90. doi: 10.1158/0008-5472.CAN-07-0696. Erratum in: Cancer Res. 2008 Sep 15;68(18):7692. Vijh, Sujata [added]. PMID: 17875730. DOI: https://doi.org/10.1158/0008-5472.CAN-07-0696

Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, et al. Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011 Oct 6;365(14):1273-83. doi: 10.1056/NEJMoa0910383. PMID: 21991949; PMCID: PMC3268553. DOI: https://doi.org/10.1056/NEJMoa0910383

Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001 Mar 15;344(11):783-92. doi: 10.1056/NEJM200103153441101. PMID: 11248153. DOI: https://doi.org/10.1056/NEJM200103153441101

PEGRAM, M. D. Antibody dependant cell-mediated cytotoxicity in breast cancer patients in phase II clinical trials of a humanized anti-HER2 antibody. En Proc Am Assoc Cancer Res Annu Meet. 1997. p. A4044.

Musolino A, Naldi N, Dieci MV, Zanoni D, Rimanti A, Boggiani D, et al. Immunoglobulin G fragment C receptor polymorphisms and efficacy of preoperative chemotherapy plus trastuzumab and lapatinib in HER2-positive breast cancer. Pharmacogenomics J. 2016 Oct;16(5):472-7. doi: 10.1038/tpj.2016.51. Epub 2016 Jul 5. PMID: 27378608. DOI: https://doi.org/10.1038/tpj.2016.51

Cuello HA, Segatori VI, Alberto M, Pesce A, Alonso DF, Gabri MR. Comparability of Antibody-Mediated Cell Killing Activity Between a Proposed Biosimilar RTXM83 and the Originator Rituximab. BioDrugs. 2016 Jun;30(3):225-31. doi: 10.1007/s40259-016-0171-8. PMID: 27053342. DOI: https://doi.org/10.1007/s40259-016-0171-8

Descargas

Publicado

18-09-2023

Cómo citar

Pesce Viglietti, A. I., Bordignon, M. B., Ostinelli, A., Cueto, G., Sanchez, M. B., Perazzo, F., Amat, M., Coló, F., Costanzo, M. V., Nervo, A., Nadal, J., Crimi, G., Mc Lean, I., Amancay, E., Mordoh, J., & Levy, E. M. (2023). Análisis del polimorfismo FcƴRIII en pacientes con cáncer de mama HER2+ en tratamiento neoadyuvante con Quimioterapia más trastuzumab y pertuzumab. Oncología Clínica, 28(2). https://doi.org/10.56969/oc.v28i2.143

Datos de los fondos

Artículos más leídos del mismo autor/a