Mecanismos de resistencia al trastuzumab

Autores/as

DOI:

https://doi.org/10.56969/oc.v17i1.130

Palabras clave:

trastuzumab, cáncer de mama, Her2, mecanismo de acción, resistencia, revisión, breast cancer, mechanism of action, resistance, review

Resumen

El trastuzumab es un anticuerpo monoclonal dirigido contra el receptor del factor de crecimiento epidérmico humano (Her2), el cual se encuentra sobreexpresado en aproximadamente el 20% del cáncer de mama invasivo. El trastuzumab es un claro ejemplo de exitoso desarrollo de terapia “blanco específica” en oncología y actualmente se encuentra aprobado para su uso terapéutico en cáncer de mama Her2+ tanto en enfermedad avanzada como con criterio adyuvante. Sin embargo, alrededor del 50% de las pacientes con cáncer de mama Her2+ no se benefician de las terapias basadas en trastuzumab. El entendimiento de los mecanismos de acción y de resistencia al trastuzumab es crucial para el desarrollo de nuevas estrategias de tratamiento. Los mecanismos de resistencia al trastuzumab se pueden agrupar en 4 categorías principales: A. Obstáculos para la unión del trastuzumab al dominio extracelular del Her2. B. Activación de las vías de traducción de señales río abajo del Her2. C. Activación de vías alternativas del Her2. D. Fallas del sistema inmunitario para destruir las células tumorales. Esta revisión resume las evidencias preclínicas y clínicas acerca de los mecanismos de acción y resistencia al trastuzumab y también discute el desarrollo de nuevas drogas antiHer2 y sus posibles implicancias clínicas.

Citas

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177-82. DOI: https://doi.org/10.1126/science.3798106

Kaufman B, Mackey J, Clemens M, et al: Trastuzumab plus anastrazole prolongs progression free survival in postmenopausal women with HER-positive, hormone-dependent metastatic breast cancer (MBC). Presented at the 31st European Society for Medical Oncology Congress, Istanbul,Turkey, September 29-October 3, 2006

Pritchard KL, Shepherd LE, O¢Malley FP, et al. HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 2006; 354: 2103-11. DOI: https://doi.org/10.1056/NEJMoa054504

Ross JS, Fletcher JA, Linette GP. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 2003; 8: 307-25. DOI: https://doi.org/10.1634/theoncologist.8-4-307

Paik S, Hazan R, Fisher ER, et al. Pathologic finding from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein expression in primary breast cancer. J Clin Oncol 1990; 8: 103-12. DOI: https://doi.org/10.1200/JCO.1990.8.1.103

Kallioniemi OP, Holli K, Visakorpi T, Koivula T, Helin HH, Isola JJ. Association of c-erbB-2 protein over-expression with high rate of cell proliferation, increased risk of visceral metastasis and poor long-term survival in breast cancer. Int J Cancer 1991; 49: 650-5. DOI: https://doi.org/10.1002/ijc.2910490504

Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639-48. DOI: https://doi.org/10.1200/JCO.1999.17.9.2639

Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783-92. DOI: https://doi.org/10.1056/NEJM200103153441101

Marty M, Cognetti F, Maraninchi D, et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 2005; 23: 4265-74. DOI: https://doi.org/10.1200/JCO.2005.04.173

Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353: 1673-84. DOI: https://doi.org/10.1056/NEJMoa052122

Slamon D, Eiersmann W, Robert N, et al. BCIRG 006 phase III trial comparing AC→T with AC→TH and with TCH in the adjuvant treatment of HER2-amplified early breast cancer patients: third planned efficacy analysis. Presented at the 32nd Annual San Antonio Breast Cancer Symposium. December 9-13, 2009.

Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2- positive breast cancer. N Engl J Med 2005; 353: 1659-72. DOI: https://doi.org/10.1056/NEJMoa052306

Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu overexpressing metastasic breast cancer. J Clin Oncol 1996; 14: 737-44. DOI: https://doi.org/10.1200/JCO.1996.14.3.737

Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20: 719-26. DOI: https://doi.org/10.1200/JCO.2002.20.3.719

Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 2006; 3: 269-80. DOI: https://doi.org/10.1038/ncponc0509

Ross JS, Fletcher JA, Bloom KJ, et al. Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol Cell Proteomics 2004; 3: 379-98. DOI: https://doi.org/10.1074/mcp.R400001-MCP200

Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2: 127-37. DOI: https://doi.org/10.1038/35052073

Tzahar E, Waterman H, Chen X, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16: 5276-87. DOI: https://doi.org/10.1128/MCB.16.10.5276

Roskoski R Jr. The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun 2004; 319: 1-11. DOI: https://doi.org/10.1016/j.bbrc.2004.04.150

Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 2009; 14: 320-68. DOI: https://doi.org/10.1634/theoncologist.2008-0230

Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu Rev Biochem 1998; 67: 481-507. DOI: https://doi.org/10.1146/annurev.biochem.67.1.481

Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PBK by the rictormTOR complex. Science 2005; 307: 1098-101. DOI: https://doi.org/10.1126/science.1106148

Markman B, Atzori F, Pérez-García J, Tabernero J, Baselga J. Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol 2010; 21: 683-91. DOI: https://doi.org/10.1093/annonc/mdp347

Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol 2007; 18: 977-84. DOI: https://doi.org/10.1093/annonc/mdl475

Pérez-Tenorio G, Stàl O; Southeast Sweden Breast Cancer Group. Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patiens. Br J Cancer 2002; 86: 540-5. DOI: https://doi.org/10.1038/sj.bjc.6600126

Stàl O, Pérez-Tenorio G, Akerberg L, et al. Akt kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res 2003; 5: R37-R44. DOI: https://doi.org/10.1186/bcr569

Tokunaga E, Kataoka A, Kimura Y, et al: The association between Akt activation and resistance to hormone therapy in metastatic breast cancer. Eur J Cancer 42: 629-635, 2006 DOI: https://doi.org/10.1016/j.ejca.2005.11.025

Press MF, Lenz HJ. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 2007; 67: 2045-75. DOI: https://doi.org/10.2165/00003495-200767140-00006

Pohlman PR, Mayer IA, Mernaugh R. Resistance to trastuzumab in breast cancer. Clin Cancer Res 2009; 15: 7479-91. DOI: https://doi.org/10.1158/1078-0432.CCR-09-0636

Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000; 6: 443-6.

Barok M, Isola J, Pàlyi-Krekk Z, et al. Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance. Mol Cancer Ther 2007; 6: 2065-72. DOI: https://doi.org/10.1158/1535-7163.MCT-06-0766

Spiridon CI, Guinn S, Vitetta ES. A comparation of the in vitro and in vivo activities of IgG anf F(ab’) 2 fragments of a mixture of three monoclonal anti-Her-2 antibodies. Clin Cancer Res 2004; 10: 3542-51. DOI: https://doi.org/10.1158/1078-0432.CCR-03-0549

Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitor Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000; 6: 443-6. DOI: https://doi.org/10.1038/74704

Shields RL, Namenuk AK, Hong K, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RIII, FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 2001; 276:6591-604. DOI: https://doi.org/10.1074/jbc.M009483200

Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 2001; 61: 4744-9.

Hommelgaard AM, Lerdrup M, van Deurs B. Association with membrane protrusions makes ErbB2 an internalization-resistant receptor. Mol Biol Cell 2004; 15: 1557-67. DOI: https://doi.org/10.1091/mbc.e03-08-0596

Pietras RJ, Fendly BM, Chazin VR, Pegram MD, Howell SB, Slamon DJ. Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene 1994; 9: 1829-38.

Pietras RJ, Poen JC, Gallardo D, Wongvipat PN, Lee HJ, Slamon DJ. Monoclonal antibody to HER-2/neu receptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cell overexpressing this oncogene. Cancer Res 1999; 59: 1347-55.

Zhang S, Huang WC, Li P, et al. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 2011; 17: 461-9. DOI: https://doi.org/10.1038/nm.2309

Price-Schiavi SA, Jepson S, Li P, et al. Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potencial mechanism for herceptin resistance. Int J Cancer 2002; 99: 783-91. DOI: https://doi.org/10.1002/ijc.10410

Nagy P, Friedländer E, Tanner M, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 2005; 65: 473-82. DOI: https://doi.org/10.1158/0008-5472.473.65.2

Carraway KL, Price-Schiavi SA, Komatsu M, Jepson S, Perez A, Carraway CA. Muc4/sialomucin complex in the mammary gland and breast cancer. J Mammary Glan Biol Neoplasia 2001; 6: 323-37. DOI: https://doi.org/10.1023/A:1011327708973

Christianson TA, Doherty JK, Lin YJ, et al. NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and prognostic factors in breast cancer. Cancer Res 1998; 58: 5123-9.

Sáez R, Molina MA, Ramsey EE, et al. p95HER-2 predicts worse outcome in patients with HER-2 positive breast cancer. Clin Cancer Res 2006; 12: 424-31. DOI: https://doi.org/10.1158/1078-0432.CCR-05-1807

Xia W, Liu LH, Ho P, Spector NL. Truncated ErbB2 receptor (p95ErbB2) is regulated by heregulin through heterodimer formation with ErbB3 yet remains sensitive to the dual EGFR/ErbB2 kinase inhibitor GW572016. Oncogene 2004; 23: 646-53. DOI: https://doi.org/10.1038/sj.onc.1207166

Anido J, Scaltriti M, Bech Serra JJ, et al. Biosynthesis of tumorigenic HER2 C-terminal fragments by alternative initiation of traslation. EMBO J 2006; 25: 3234-44. DOI: https://doi.org/10.1038/sj.emboj.7601191

Parra-Palau JL, Pedersen K, Peg V, et al. A major role of p95/611-CTF, a carboxy-terminal fragment of HER2, in the down-modulation of the estrogen receptor in HER2-positive breast cancers. Cancer Res 2010; 70: 8537-46. DOI: https://doi.org/10.1158/0008-5472.CAN-10-1701

Molina MA, Sáez R, Ramsey EE, et al. NH(2)-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer. Clin Cancer Res 2002; 8: 347-53.

Lennon S, Barton C, Banken L, et al. Utility of serum HER2 extracellular domain assessment in clinical decision making: pooled analysis of four trials of trastuzumab in metastatic breast cancer. J Clin Oncol 2009; 27: 1685-93. DOI: https://doi.org/10.1200/JCO.2008.16.8351

Scaltriti M, Rojo F, Ocaña A, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst 2007; 99: 628-38. DOI: https://doi.org/10.1093/jnci/djk134

Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006; 355: 2733-43. DOI: https://doi.org/10.1056/NEJMoa064320

Johnston S, Pippen J Jr, Pivot X, et al. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor–positive metastatic breast cancer. J Clin Oncol 2009; 27: 5538-46. DOI: https://doi.org/10.1200/JCO.2009.23.3734

Baselga J, Bradbury I, Eidtmann H, et al. First results of the NeoALTTO trial (BIG 01-06 / EGF 106903): a phase III, randomized, open label, neoadjuvant study of lapatinib, trastuzumab, and their combination plus paclitaxel in women with HER2-positive primary breast cancer. San Antonio Breast Cancer Symposium, 2010. DOI: https://doi.org/10.1158/0008-5472.SABCS10-S3-3

Burstein HJ, Sun Y, Dirix LY, et al. Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol 2010; 28: 1301-7. DOI: https://doi.org/10.1200/JCO.2009.25.8707

Rugo HS, Stopeck AT, Joy AA, et al. Randomized, placebo-controlled, double-blind, phase II study of axitinib plus docetaxel versus docetaxel plus placebo in patients with metastatic breast cancer. J Clin Oncol 2011; 29: 2459-65. DOI: https://doi.org/10.1200/JCO.2010.31.2975

Simpson L, Parson R. PTEN: life as a tumor suppressor. Exp Cell Res 2001; 264: 29-41. DOI: https://doi.org/10.1006/excr.2000.5130

Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, as inherited breast and thyroid cancer syndrome. Nat Genet 1997; 16: 64-7. DOI: https://doi.org/10.1038/ng0597-64

Nagata Y, Lan KH, Zhou X, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6: 117-27. DOI: https://doi.org/10.1016/j.ccr.2004.06.022

Campbell IG, Rusell SE, Choong DY, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 2004; 64: 7678-81. DOI: https://doi.org/10.1158/0008-5472.CAN-04-2933

Lee JW, Soung YH, Kim SY. PIK3CA gene is frequently mutated in breast carcinoma and hepatocellular carcinomas. Oncogene 2005; 24: 1477-80. DOI: https://doi.org/10.1038/sj.onc.1208304

Kang S, Bader AG, Vogt PK. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 2005; 102: 802-7. DOI: https://doi.org/10.1073/pnas.0408864102

Samuels Y, Diaz LA Jr, Schmidt-Kittler O, et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 2005; 7: 561-73. DOI: https://doi.org/10.1016/j.ccr.2005.05.014

Berns K, Horlings HM, Hennessy BT, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007; 12: 395-402. DOI: https://doi.org/10.1016/j.ccr.2007.08.030

Chan CT, Metz MZ, Kane SE. Differential sensitivities of trastuzumab (Herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3K) and epidermal growth factor receptor (EGFR) kinase inhibitors. Breast Cancer Res Treat 2005; 91: 187-201. DOI: https://doi.org/10.1007/s10549-004-7715-1

Dunlap J, Le C, Shukla A, et al. Phosphatidylinositol-3-kinase and AKT1 mutations occur early in breast carcinoma. Breast Cancer Res Treat 2010; 120: 409-18. DOI: https://doi.org/10.1007/s10549-009-0406-1

Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 2008; 68: 6084-91. DOI: https://doi.org/10.1158/0008-5472.CAN-07-6854

Gori S, Sidoni A, Colozza M, et al. EGFR, pMAPK, pAK-Tand PTEN status by68. immunohistochemistry: correlation with clinical outcome in HER2-positive metastatic breast cancer patients treated with trastuzumab. Ann Oncol 2009; 20: 648-54. DOI: https://doi.org/10.1093/annonc/mdn681

Brugge J, Hung MC, Mills GG. A new mutational AKTivation in the PI3K pathway. Cancer Cell 2007; 12: 104-7. DOI: https://doi.org/10.1016/j.ccr.2007.07.014

Tseng PH, Wang YC, Weng SC, et al. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Mol Pharmacol 2006; 70: 1534-41. DOI: https://doi.org/10.1124/mol.106.023911

Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001; 93: 1852-7. DOI: https://doi.org/10.1093/jnci/93.24.1852

Nahta R, Yuan LX, Zhang B, Kobashayi R, Esteva FJ. Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005; 65: 1118-28. DOI: https://doi.org/10.1158/0008-5472.CAN-04-3841

Harris LN, You F, Schnitt SJ, et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER-2 positive early breast cancer. Clin Cancer Res 2007; 13: 1198-207. DOI: https://doi.org/10.1158/1078-0432.CCR-06-1304

Narayan M, Wilken JA, Harris LN, Baron AT, Kimbler KD, Maihle NJ. Trastuzumab-induced HER reprogramming in “resistant” breast carcinoma cells. Cancer Res 2009; 69: 2191-4. DOI: https://doi.org/10.1158/0008-5472.CAN-08-1056

Arteaga CL, O¢Neil A, Moulder SL, et al. A phase I-II study of combined blockade of the ErbB receptor network with trastuzumab and gefitinib in patients with HER2 (ErbB)-overexpressing metastatic breast cancer. Clin Cancer Res 2008; 14: 6277-83. DOI: https://doi.org/10.1158/1078-0432.CCR-08-0482

Valabrega G, Montemurro F, Giordano S, et al. TGFa expression impairs trastuzumab-induced Her2 downregulation. Oncogene2005; 24: 3002-10. DOI: https://doi.org/10.1038/sj.onc.1208478

Nahta R, Hung MC, Esteva FJ. The HER-2 targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004; 64: 2343-6. DOI: https://doi.org/10.1158/0008-5472.CAN-03-3856

Muñoz-Mateu M, Urriticoechea A, Separovic R, et al. Trastuzumab plus capecitabine with or without pertuzumab in patients with HER2-positive MBC whose disease has progressed during or following trastuzumab-based therapy for first-line metastatic disease: A multicenter, randomized, two-arm, phase II study (PHEREXA). Presented at ASCO 2011. DOI: https://doi.org/10.1200/jco.2011.29.15_suppl.tps118

Shattuck D,L Miller JK, Carraway KL 3rd, Sweeney C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 2008; 68: 1471-7. DOI: https://doi.org/10.1158/0008-5472.CAN-07-5962

Camp RL, Rimm EB, Rimm DL. Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer 1999; 86: 2259-65. DOI: https://doi.org/10.1002/(SICI)1097-0142(19991201)86:11<2259::AID-CNCR13>3.0.CO;2-2

Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039-43. DOI: https://doi.org/10.1126/science.1141478

Nahta R, Takahasi T, Ueno NT, Hung MC, Esteva FJ. P27(kip1) down-regulation is associated with trastuzumab resistance in breast cancer cells. Cancer Res 2004; 64: 3981-6. DOI: https://doi.org/10.1158/0008-5472.CAN-03-3900

Tamura K, Shimizu C, Hojo T, et al. FcgR2A and 3A polimorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer. Ann Oncol 2011; 22: 1302-7. DOI: https://doi.org/10.1093/annonc/mdq585

Lazar G, Dang W, Karki S, et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 2006; 103: 4005-10. DOI: https://doi.org/10.1073/pnas.0508123103

Descargas

Publicado

15-03-2012

Cómo citar

Korbenfeld, E. (2012). Mecanismos de resistencia al trastuzumab. Oncología Clínica, 17(1). https://doi.org/10.56969/oc.v17i1.130

Artículos más leídos del mismo autor/a